a^2+2a=3364

Simple and best practice solution for a^2+2a=3364 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for a^2+2a=3364 equation:



a^2+2a=3364
We move all terms to the left:
a^2+2a-(3364)=0
a = 1; b = 2; c = -3364;
Δ = b2-4ac
Δ = 22-4·1·(-3364)
Δ = 13460
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$a_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$a_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{13460}=\sqrt{4*3365}=\sqrt{4}*\sqrt{3365}=2\sqrt{3365}$
$a_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(2)-2\sqrt{3365}}{2*1}=\frac{-2-2\sqrt{3365}}{2} $
$a_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(2)+2\sqrt{3365}}{2*1}=\frac{-2+2\sqrt{3365}}{2} $

See similar equations:

| 4x^2+18x+280=0 | | 3(x-2)+1=-23 | | s+7/10=3 | | -4.9t+73.5=0 | | 27+2u=91 | | 10-3x+10x=5x-5+2x+8 | | .5n+7=11 | | c+9=8c-(9+7c) | | 8n=21=-43 | | 5(x+3)+4=9 | | 36000-200x+.4(x^2)=0 | | 36000-200x+.4x^2=0 | | (3/4)p=30 | | 5b−2b+5b=16 | | Y+x+55=180 | | -33=-6r=9 | | 7y+10=6y+1 | | 90=14x+5 | | 5x+3+4=9 | | 1.2x+1=x+4 | | (7y-25)^2+y^2=25 | | -4(x+2)-0.5(2x-6)=0 | | 3x²=72 | | 27/63=x/42 | | 6×+5y=15 | | -.00635x^2+4x+60=0 | | 7y+21=-14 | | 90x+3=12 | | .00635x^2-4x-60=0 | | x+4(1/2x)=18 | | 0.01x^2-0.01X-6=0 | | 15/y+4=21 |

Equations solver categories